Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(7): 107071, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534159

RESUMO

Cells of origin in cancer determine tumor phenotypes, but whether lineage-defining transcription factors might influence tissue specificity of tumorigenesis among organs with similar developmental traits are unknown. We demonstrate here that tumor development and progression markedly differ in lung and thyroid targeted by Braf mutation in Nkx2.1CreERT2 mice heterozygous for Nkx2-1. In absence of tamoxifen, non-induced Nkx2.1CreERT2;BrafCA/+ mutants developed multiple full-blown lung adenocarcinomas with a latency of 1-3 months whereas thyroid tumors were rare and constrained, although minute BrafCA activation documented by variant allele sequencing was similar in both tissues. Induced oncogene activation accelerated neoplastic growth only in the lungs. By contrast, NKX2-1+ progenitor cells were equally responsive to constitutive expression of mutant Braf during lung and thyroid development. Both lung and thyroid cells transiently downregulated NKX2-1 in early tumor stages. These results indicate that BRAFV600E-induced tumorigenesis obey organ-specific traits that might be differentially modified by a shared lineage factor.

2.
Dis Model Mech ; 15(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34379110

RESUMO

Cancer cells hijack developmental growth mechanisms but whether tissue morphogenesis and architecture modify tumorigenesis is unknown. Here, we characterized a new mouse model of sporadic thyroid carcinogenesis based on inducible expression of BRAF carrying a Val600 Glu (V600E) point mutation (BRAFV600E) from the thyroglobulin promoter (TgCreERT2). Spontaneous activation of this Braf-mutant allele due to leaky activity of the Cre recombinase revealed that intrinsic properties of thyroid follicles determined BRAF-mutant cell fate. Papillary thyroid carcinomas developed multicentrically within a normal microenvironment. Each tumor originated from a single follicle that provided a confined space for growth of a distinct tumor phenotype. Lineage tracing revealed oligoclonal tumor development in infancy and early selection of BRAFV600E kinase inhibitor-resistant clones. Somatic mutations were few, non-recurrent and limited to advanced tumors. Female mice developed larger tumors than males, reproducing the gender difference of human thyroid cancer. These data indicate that BRAFV600E-induced tumorigenesis is spatiotemporally regulated depending on the maturity and heterogeneity of follicles. Moreover, thyroid tissue organization seems to determine whether a BRAF-mutant lineage becomes a cancerized lineage. The TgCreERT2;BrafCA/+ sporadic thyroid cancer mouse model provides a new tool to evaluate drug therapy at different stages of tumor evolution.


Assuntos
Antineoplásicos , Neoplasias da Glândula Tireoide , Animais , Feminino , Masculino , Camundongos , Mutação/genética , Mutação Puntual , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...